Freshman Organic Chemistry
Yale,, Fall 2008 , Prof. J. Michael McBride
Updated On 02 Feb, 19
Yale,, Fall 2008 , Prof. J. Michael McBride
Updated On 02 Feb, 19
How Do You Know - Force Laws, Lewis Structures and Resonance - Double Minima, Earnshaws Theorem and Plum - Puddings - Coping with Smallness and Scanning Probe Microscopy - X-Ray Diffraction-Seeing Bonds by Electron Difference Density - Quantum Mechanical Kinetic Energy - One-Dimensional Wave Functions - Chladni Figures and One - Electron Atoms - Reality and the Orbital Approximation - Orbital Correction and Plum - Pudding Molecules - Overlap and Atom - Pair Bonds - Overlap and Energy - Match - Checking Hybridization Theory with XH_3-Chemical Reactivity: SOMO, HOMO, and LUMO - Recognizing Functional Groups - Reaction Analogies and Carbonyl Reactivity - Amide, Carboxylic Acid and Alkyl Lithium-Oxygen and the Chemical Revolution - Rise of the Atomic Theory - Berzelius to Liebig and W�hler - Radical and Type Theories (1832-1850)-Valence Theory and Constitutional Structure (1858) - Determining Chemical Structure by Isomer Counting (1869)
Models in 3D Space (1869-1877); Optical Isomers - Vant Hoffs Tetrahedral Carbon and ChiralityCommunicating Molecular Structure in Diagrams and Words - Stereochemical Nomenclature; Racemization and Resolution - Preparing Single Enantiomers and the Mechanism of Optical Rotation - Esomeprazole as an Example of Drug Testing and Usage - Preparing Single Enantiomers and Conformational Energy - Stereotopicity and Baeyer Strain Theory -Conformational Energy and Molecular Mechanics - Sharpless Oxidation Catalysts and the Conformation of Cycloalkanes - Understanding Molecular Structure and Energy through Standard Bonds - Bond Energies, the Boltzmann Factor and Entropy - Potential Energy Surfaces, Transition State Theory and Reaction Mechanism
4.1 ( 11 )
Freshman Organic Chemistry (CHEM 125)
In discussions of the Schrödinger equation thus far, the systems described were either one-dimensional or involved a single electron. After discussing how increased nuclear charge affects the energies of one-electron atoms and then discussing hybridization, this lecture finally addresses the simple fact that multi-electron systems cannot be properly described in terms of one-electron orbitals.
0000 - Chapter 1. Atom-in-a-Box Plots Assessing Probability Density
1407 - Chapter 2. Scaling the Wave Function for Changing Nuclear Charge
2120 - Chapter 3. Scaling Energy with Respect to Nuclear Charge
2734 - Chapter 4. Superposition, and the Orientation and Shape of Hybrid Orbitals
4043 - Chapter 5. An Inconvenient Truth Troubles Describing Multi-Electron Systems
Complete course materials are available at the Open Yale Courses website httpopen.yale.educourses
This course was recorded in Fall 2008.
Sam
Sep 12, 2018
Excellent course helped me understand topic that i couldn't while attendinfg my college.
Dembe
March 29, 2019
Great course. Thank you very much.