x
Menu

Freshman Organic Chemistry

Yale,, Fall 2008 , Prof. J. Michael McBride

Updated On 02 Feb, 19

Overview

How Do You Know - Force Laws, Lewis Structures and Resonance - Double Minima, Earnshaws Theorem and Plum - Puddings - Coping with Smallness and Scanning Probe Microscopy - X-Ray Diffraction-Seeing Bonds by Electron Difference Density - Quantum Mechanical Kinetic Energy - One-Dimensional Wave Functions - Chladni Figures and One - Electron Atoms - Reality and the Orbital Approximation - Orbital Correction and Plum - Pudding Molecules - Overlap and Atom - Pair Bonds - Overlap and Energy - Match - Checking Hybridization Theory with XH_3-Chemical Reactivity: SOMO, HOMO, and LUMO - Recognizing Functional Groups - Reaction Analogies and Carbonyl Reactivity - Amide, Carboxylic Acid and Alkyl Lithium-Oxygen and the Chemical Revolution - Rise of the Atomic Theory - Berzelius to Liebig and W�hler - Radical and Type Theories (1832-1850)-Valence Theory and Constitutional Structure (1858) - Determining Chemical Structure by Isomer Counting (1869)

Models in 3D Space (1869-1877); Optical Isomers - Vant Hoffs Tetrahedral Carbon and ChiralityCommunicating Molecular Structure in Diagrams and Words - Stereochemical Nomenclature; Racemization and Resolution - Preparing Single Enantiomers and the Mechanism of Optical Rotation - Esomeprazole as an Example of Drug Testing and Usage - Preparing Single Enantiomers and Conformational Energy - Stereotopicity and Baeyer Strain Theory -Conformational Energy and Molecular Mechanics - Sharpless Oxidation Catalysts and the Conformation of Cycloalkanes - Understanding Molecular Structure and Energy through Standard Bonds - Bond Energies, the Boltzmann Factor and Entropy - Potential Energy Surfaces, Transition State Theory and Reaction Mechanism

Includes

Lecture 11: Orbital Correction and Plum-Pudding Molecules

4.1 ( 11 )


Lecture Details

Freshman Organic Chemistry (CHEM 125)

The lecture opens with tricks ("Z-effective" and "Self Consistent Field") that allow one to correct approximately for the error in using orbitals that is due to electron repulsion. This error is hidden by naming it "correlation energy." Professor McBride introduces molecules by modifying J.J. Thomsons Plum-Pudding model of the atom to rationalize the form of molecular orbitals. There is a close analogy in form between the molecular orbitals of CH4 and NH3 and the atomic orbitals of neon, which has the same number of protons and neutrons. The underlying form due to kinetic energy is distorted by pulling protons out of the Ne nucleus to play the role of H atoms.

0000 - Chapter 1. Introduction
0153 - Chapter 2. Correcting for Electron Repulsion when Using Orbitals
1526 - Chapter 3. Correlation Energy and the Limits of Orbital Theory
3052 - Chapter 4. Kinetic Energys Effects on the Shapes of Atomic Orbitals
4032 - Chapter 5. Moving Nuclei to Distort "Electric Puddings" Case Studies with Methane and Ammonia

Complete course materials are available at the Open Yale Courses website httpopen.yale.educourses

This course was recorded in Fall 2008.

Ratings

4.0


1 Ratings
55%
30%
10%
3%
2%
Comments
comment person image

Sam

Excellent course helped me understand topic that i couldn't while attendinfg my college.

Reply
comment person image

Dembe

Great course. Thank you very much.

Reply
Send