Freshman Organic Chemistry
Yale,, Fall 2008 , Prof. J. Michael McBride
Updated On 02 Feb, 19
Yale,, Fall 2008 , Prof. J. Michael McBride
Updated On 02 Feb, 19
How Do You Know - Force Laws, Lewis Structures and Resonance - Double Minima, Earnshaws Theorem and Plum - Puddings - Coping with Smallness and Scanning Probe Microscopy - X-Ray Diffraction-Seeing Bonds by Electron Difference Density - Quantum Mechanical Kinetic Energy - One-Dimensional Wave Functions - Chladni Figures and One - Electron Atoms - Reality and the Orbital Approximation - Orbital Correction and Plum - Pudding Molecules - Overlap and Atom - Pair Bonds - Overlap and Energy - Match - Checking Hybridization Theory with XH_3-Chemical Reactivity: SOMO, HOMO, and LUMO - Recognizing Functional Groups - Reaction Analogies and Carbonyl Reactivity - Amide, Carboxylic Acid and Alkyl Lithium-Oxygen and the Chemical Revolution - Rise of the Atomic Theory - Berzelius to Liebig and W�hler - Radical and Type Theories (1832-1850)-Valence Theory and Constitutional Structure (1858) - Determining Chemical Structure by Isomer Counting (1869)
Models in 3D Space (1869-1877); Optical Isomers - Vant Hoffs Tetrahedral Carbon and ChiralityCommunicating Molecular Structure in Diagrams and Words - Stereochemical Nomenclature; Racemization and Resolution - Preparing Single Enantiomers and the Mechanism of Optical Rotation - Esomeprazole as an Example of Drug Testing and Usage - Preparing Single Enantiomers and Conformational Energy - Stereotopicity and Baeyer Strain Theory -Conformational Energy and Molecular Mechanics - Sharpless Oxidation Catalysts and the Conformation of Cycloalkanes - Understanding Molecular Structure and Energy through Standard Bonds - Bond Energies, the Boltzmann Factor and Entropy - Potential Energy Surfaces, Transition State Theory and Reaction Mechanism
4.1 ( 11 )
Freshman Organic Chemistry (CHEM 125)
Professor McBride begins by following Newtons admonition to search for the force law that describes chemical bonding. Neither direct (Hookes Law) nor inverse (Coulomb, Gravity) dependence on distance will do - a composite like the Morse potential is needed. G. N. Lewis devised a "cubic-octet" theory based on the newly discovered electron, and developed it into a shared pair model to explain bonding. After discussing Lewis-dot notation and formal charge, Professor McBride shows that in some "single-minimum" cases the Lewis formalism is inadequate and salvaging it required introducing the confusing concept of "resonance."
0000 - Chapter 1. Newtons "Additions" An Inquiry into Small Forces
0915 - Chapter 2. Is there a Chemical Force Law?
1826 - Chapter 3. The Morse Potential
2142 - Chapter 4. What are Bonds? Early Understandings of Valence
3252 - Chapter 5. Deriving Structure and Reactivity from Valence Electrons
Complete course materials are available at the Open Yale Courses website httpopen.yale.educourses
This course was recorded in Fall 2008.
Sam
Sep 12, 2018
Excellent course helped me understand topic that i couldn't while attendinfg my college.
Dembe
March 29, 2019
Great course. Thank you very much.