x
Menu

Freshman Organic Chemistry

Yale,, Fall 2008 , Prof. J. Michael McBride

Updated On 02 Feb, 19

Overview

How Do You Know - Force Laws, Lewis Structures and Resonance - Double Minima, Earnshaws Theorem and Plum - Puddings - Coping with Smallness and Scanning Probe Microscopy - X-Ray Diffraction-Seeing Bonds by Electron Difference Density - Quantum Mechanical Kinetic Energy - One-Dimensional Wave Functions - Chladni Figures and One - Electron Atoms - Reality and the Orbital Approximation - Orbital Correction and Plum - Pudding Molecules - Overlap and Atom - Pair Bonds - Overlap and Energy - Match - Checking Hybridization Theory with XH_3-Chemical Reactivity: SOMO, HOMO, and LUMO - Recognizing Functional Groups - Reaction Analogies and Carbonyl Reactivity - Amide, Carboxylic Acid and Alkyl Lithium-Oxygen and the Chemical Revolution - Rise of the Atomic Theory - Berzelius to Liebig and W�hler - Radical and Type Theories (1832-1850)-Valence Theory and Constitutional Structure (1858) - Determining Chemical Structure by Isomer Counting (1869)

Models in 3D Space (1869-1877); Optical Isomers - Vant Hoffs Tetrahedral Carbon and ChiralityCommunicating Molecular Structure in Diagrams and Words - Stereochemical Nomenclature; Racemization and Resolution - Preparing Single Enantiomers and the Mechanism of Optical Rotation - Esomeprazole as an Example of Drug Testing and Usage - Preparing Single Enantiomers and Conformational Energy - Stereotopicity and Baeyer Strain Theory -Conformational Energy and Molecular Mechanics - Sharpless Oxidation Catalysts and the Conformation of Cycloalkanes - Understanding Molecular Structure and Energy through Standard Bonds - Bond Energies, the Boltzmann Factor and Entropy - Potential Energy Surfaces, Transition State Theory and Reaction Mechanism

Includes

Lecture 9: Chladni Figures and One-Electron Atoms

4.1 ( 11 )


Lecture Details

Freshman Organic Chemistry (CHEM 125)

After showing how a double-minimum potential generates one-dimensional bonding, Professor McBride moves on to multi-dimensional wave functions. Solving Schrödingers three-dimensional differential equation might have been daunting, but it was not, because the necessary formulas had been worked out more than a century earlier in connection with acoustics. Acoustical "Chladni" figures show how nodal patterns relate to frequencies. The analogy is pursued by studying the form of wave functions for "hydrogen-like" one-electron atoms. Removing normalizing constants from the formulas for familiar orbitals reveals the underlying simplicity of their shapes.

0000 - Chapter 1. 1-D Bonding from Double-Minimum Potentials
0903 - Chapter 2. Addressing Multi-Dimensional Problems Chladnis Acoustics
2252 - Chapter 3. Applying Chladnis Nodal Patterns to the Form of One-Electron Atoms
3205 - Chapter 4. Removing Normalizing Constants to Understand Orbital Shapes

Complete course materials are available at the Open Yale Courses website httpopen.yale.educourses

This course was recorded in Fall 2008.

Ratings

4.0


1 Ratings
55%
30%
10%
3%
2%
Comments
comment person image

Sam

Excellent course helped me understand topic that i couldn't while attendinfg my college.

Reply
comment person image

Dembe

Great course. Thank you very much.

Reply
Send