MA 242 - Analytic Geometry and Calculus III
North Carolina State University,, Fall 2004 , Prof. Larry K. Norris
Updated On 02 Feb, 19
North Carolina State University,, Fall 2004 , Prof. Larry K. Norris
Updated On 02 Feb, 19
Cartesian Coordinates in space - Vectors - The Dot Product - The Cross Product - Equations of Lines and Planes - Vector Functions and Space Curves - Derivatives and Integrals of Vector Functions - Arc Length and Curvature - Motion in Space - Functions and surfaces - Functions of several variables - level curves of f(x,y)and level surfaces of f(x,y,z) - Limits and continuity of f(x,y) and f(x,y,z) - partial derivatives - differentiability of f(x,y) and f(x,y,z) - The Chain Rule - Directional derivatives and the gradient vector - optimization - Double Integrals over Rectangles - Iterated integrals - Double Integrals over general regions - Double integrals in polar coordinates - Applications of double integrals - Triple integrals in Cartesian coordinates - Cylindrical coordinates - Triple integrals in cylindrical coordinates
Spherical coordinates - Triple integrals in spherical coordinates - Vector Fields - Line integrals - Line integrals of functions along parameterized curves - Line integrals of vector fields along parameterized curves; The defintion of the work done by a force - The fundamental theorem for Line Integrals - Greens Theorem - Divergence and Curl - Parametric Surfaces - BEGIN MAPLE ASSIGNMENT - tangent planes to parametrized surfaces - Surface area of Parameterized Surfaces - Surface Integrals - surface integral of a function - surface integral of a vector field - Stokes Theorem - The Divergence Theorem -
4.1 ( 11 )
Finish Section 13.3. Show how Newton’s second law combined with conservative forces leads to the law of conservation of total energy.
Begin 13.4 Green’s Theorem
Sam
Sep 12, 2018
Excellent course helped me understand topic that i couldn't while attendinfg my college.
Dembe
March 29, 2019
Great course. Thank you very much.