Introduction, problem of brachistochrone, problem of geodesics, isoperimetric problem,Variation and its properties, functions and functionals, Comparison between the notion of extrema of a function and a functional – Variational problems with the fixed boundaries, Euler’s equation, the fundamental lemma of the calculus of variations, examples, Functionals in the form of integrals, special cases contaning only some of the variables, examples, Functionals involving more than one dependent variables and their first derivatives, the system of Euler’s equations, Functionals depending on the higher derivatives of the dependent variables, Euler- Poisson equation, examples, Functionals containing several independent variables, Ostrogradsky equation, examples, Variational problems in parametric form, applications to differential equations, examples, Variational problems with moving boundaries, pencil of extremals, Transversality condition, examples – Moving boundary problems with more than one dependent variables, transversality condition in a more general case, examples, Extremals with corners, refraction of extremals, examples, One-sided variations, conditions for one sided variations.

Field of extremals, central field of extremals, Jacobi’s condition, The Weierstrass function, a weak extremum, a strong extremum, The Legendre condition, examples, Transforming the Euler equations to the canonical form, Variational problems involving conditional extremum, examples, constraints involving several variables and their derivatives, Isoperimetric problems, examples – Introduction and basic examples, Classification, Conversion of Volterra Equation to ODE, Conversion of IVP and BVP to Integral Equation – Decomposition, direct computation, Successive approximation, Successive substitution methods for Fredholm Integral Equations – A domain decomposition, series solution, successive approximation, successive substitution method for Volterra Integral Equations, Volterra Integral Equation of first kind, Integral Equations with separable Kernel – Fredholm’s first, second and third theorem, Integral Equations with symmetric kernel, Eigenfunction expansion, Hilbert-Schmidt theorem – Fredholm and Volterra Integro-Differential equation, Singular and nonlinear Integral Equation.

### Course Curriculum

 Lecture #1 Details 57:50 Lecture #2 Details 59:16 Lecture #3 Details 54:48 Lecture #4 Details 54:43 Lecture #5 Details 54:35 Lecture #6 Details 54:23 Lecture #7 Details 43:25 Lecture #8 Details 52:32 Lecture #9 Details 54:57 Lecture #10 Details 56:32 Lecture #11 Details 53:24 Lecture #12 Details 54:24 Lecture #13 Details 55:36 Lecture #14 Details 57:52 Lecture #15 Details 53:56 Lecture #16 Details 55:3 Lecture #17 Details 54:23 Lecture #18 Details 53:25 Lecture #19 Details 47:59 Lecture #20 Details 51:13 Lecture #21 Details 57:13 Lecture #22 Details 57:19 Lecture #23 Details 57:40 Lecture #24 Details 49:3 Lecture #25 Details 53:34 Lecture #26 Details 55:55 Lecture #27 Details 51:18 Lecture #28 Details 52:53 Lecture #29 Details 57:23 Lecture #30 Details 55:25 Lecture #31 Details 54:9 Lecture #32 Details 0:52 Lecture #33 Details 54:41 Lecture #34 Details 54:47 Lecture #35 Details 51:35 Lecture #36 Details 55:6 Lecture #37 Details 57:51 Lecture #38 Details 54:41 Lecture #39 Details 53:44 Lecture #40 Details 55:18

Video lessons are provided by IIT Kanpur as part of NPTEL Video tutorials.

## N.A

ratings
• 5 stars0
• 4 stars0
• 3 stars0
• 2 stars0
• 1 stars0

No Reviews found for this course.

31 STUDENTS ENROLLED

FreeVideoLectures Provides you complete information about best courses online, Video tutorials, helps you in building a career !!

help@freevideolectures.com