Soil Dynamics

IIT Bombay, , Prof. Deepankar Choudhury

Updated On 02 Feb, 19


Introduction : Scope and objective; Nature and types of dynamic loading; Importance of soil dynamics

Vibration theory : Vibration of elementary systems; Degrees of freedom (SDOF and MDOF systems); Equation of motion for SDOF system; Types of vibrations; Earthquake excitation; Undamped and damped free vibrations; Torsional vibration; Critical damping; Decay of motion; Undamped and damped forced vibration; Constant force and rotating mass oscillators; Dynamic magnification factor; Transmissibility ratio; Non-harmonic, arbitrary, impact and other types of forced vibrations; Duhamels integral; Taxing of vehicles on uneven roads; Vibration isolation; Vibration measuring instruments; Equation of motion for MDOF system.

Wave Propagation : Longitudinal and torsional waves in infinitely long rod; Solution for one-dimensional and three-dimensional equations of motion; Waves in semi-infinite body; Waves in layered medium; Earthquake waves P-wave, S-wave, Rayleigh wave and Love wave; Locating earthquake's epicenter.

Dynamic Soil Properties : Stresses in soil element; Determination of dynamic soil properties; Field tests; Laboratory tests; Model tests; Stress-strain behavior of cyclically loaded soils; Estimation of shear modulus; Modulus reduction curve; Damping ratio; Linear, equivalent-linear and non-linear models; Ranges and applications of dynamic soil tests; Cyclic plate load test; Liquefaction; Screening and estimation of liquefaction; Simplified procedure for liquefaction estimation; Factor of safety; Cyclic stress ratio; Cyclic resistance ratio; CRR correlations with SPT, CPT, SASW test values.

Machine Foundations : Types of machines; Basic design criteria; Methods of analysis; Mass-Spring-Dashpot model; Elastic-Half-Space theory; Tschebotarioffs reduced natural frequency method; Types of foundations; Modes of vibrations; Vertical, sliding, torsional (yawing) and rocking (and pitching) modes of oscillations; Design guidelines as per codes; Typical design problems.

Soil Improvement Techniques : Basic concept of soil improvement due to dynamic loading; Various methods; Mitigation of liquefaction

Dynamic Soil-Structure Interaction : Dynamic earth pressures; Force and displacement based analysis; Pseudo-static and Pseudo-dynamic analysis; Guidelines of various design codes; Dynamic analyses of various geotechnical structures like retaining wall, soil slope, railway subgrade and ballast using MSD model.


Lecture 1: L1-Introduction

4.1 ( 11 )

Lecture Details

Soil Dynamics by Dr. Deepankar Choudhury, Department of Civil Engineering, IIT Bombay. For more details on NPTEL visit httpnptel.iitm.ac.in



40 Ratings
comment person image


Excellent course helped me understand topic that i couldn't while attendinfg my college.

comment person image


Great course. Thank you very much.