Freshman Organic Chemistry I

Yale,, Spring 2011 , Prof. Michael McBride


Mechanism: How Energies and Kinetic Order Influence Reaction Rates - Peculiar Rate Laws, Bond Dissociation Energies, and Relative Reactivities - Rate and Selectivity in Radical-Chain Reactions - Electronegativity, Bond Strength, Electrostatics, and Non-Bonded Interactions - Solvation, H-Bonding, and Ionophores - Brnsted Acidity and the Generality of Nucleophilic Substitution - Nucleophilic Substitution Tools - Stereochemistry, Rate Law, Substrate, Nucleophile - Solvent, Leaving Group, Bridgehead Substitution, and Pentavalent Carbon - Pentavalent Carbon? E2, SN1, E1 - Cation Intermediates. Alkenes: Formation, Addition, and Stability - Carbocations and the Mechanism of Electrophilic Addition to Alkenes and Alkynes - Nucleophilic Participation During Electrophilic Addition to Alkenes - Addition to Form Three-Membered Rings: Carbenoids and Epoxidation.

Epoxide Opening, Dipolar Cycloaddition, and Ozonolysis - Metals and Catalysis in Alkene Oxidation, Hydrogenation, Metathesis, and Polymerization - Isoprenoids, Rubber, and Tuning Polymer Properties - Alkynes. Conjugation in Allylic Intermediates and Dienes - Linear and Cyclic Conjugation Theory. 4n+2 Aromaticity - Aromatic Transition States: Cycloaddition and Electrocyclic Reactions - Electronic and Vibrational Spectroscopy - Functional Groups and Fingerprints in IR Spectroscopy. Precession of Magnetic Nuclei - Medical MRI and Chemical NMR - Diamagnetic Anisotropy and Spin-Spin Splitting - Higher-Order Effects, Dynamics, and the NMR Time Scale.

C-13 and 2D NMR. Electrophilic Aromatic Substitution - Aromatic Substitution in Synthesis: Friedel-Crafts and Moses Gomberg - Triphenylmethyl and an Introduction to Carbonyl Chemistry - Mechanism and Equilibrium of Carbonyl Reactions - Imines and Enamines. Oxidation and Reduction - Oxidation States and Mechanisms - Periodate Cleavage, Retrosynthesis, and Green Chemistry - Measuring Bond Energies: Guest Lecture by Prof. G. Barney Ellison - Green Chemistry. Acids and Acid Derivatives - Acids and Acid Derivatives - Acyl Insertions and [gr]α-Reactivity - [gr]α-Reactivity and Condensation Reactions - Proving the Configuration of Glucose and Synthesizing Two Unnatural Products - Review: Synthesis of Cortisone.


Lecture 1: Mechanism How Energies and Kinetic Order Influence Reaction Rates

4.1 ( 11 )

Lecture Details

Freshman Organic Chemistry II (CHEM 125B)This second semester of Freshman Organic Chemistry builds on the first semesters treatment of molecular structure and energy to discuss how reaction mechanisms have been discovered and understood. It also treats the spectroscopy and synthesis of organic molecules. Reactions and their rates can be understood in terms of reaction-coordinate diagrams involving the passage of a set of atoms through the "transition state" on the potential-energy surface. Analysis of bond-dissociation energies suggests a chain mechanism for free-radical halogenation of alkanes. Experimental determination of kinetic order provides insight into complex reaction schemes, especially when one step is rate-limiting.0000 - Chapter 1. Energy and the reaction coordinate0731 - Chapter 2. Bond Strength and the Mechanism of Free-Radical Substitution 2723 - Chapter 3. Complex Reactions and Kinetic Order Complete course materials are available at the Open Yale Courses website httpoyc.yale.eduThis course was recorded in Spring 2011.



9 Ratings
comment person image


Excellent course helped me understand topic that i couldn't while attendinfg my college.

comment person image


Great course. Thank you very much.