Freshman Organic Chemistry I

Yale,, Spring 2011 , Prof. Michael McBride

Updated On 02 Feb, 19


Mechanism: How Energies and Kinetic Order Influence Reaction Rates - Peculiar Rate Laws, Bond Dissociation Energies, and Relative Reactivities - Rate and Selectivity in Radical-Chain Reactions - Electronegativity, Bond Strength, Electrostatics, and Non-Bonded Interactions - Solvation, H-Bonding, and Ionophores - Brnsted Acidity and the Generality of Nucleophilic Substitution - Nucleophilic Substitution Tools - Stereochemistry, Rate Law, Substrate, Nucleophile - Solvent, Leaving Group, Bridgehead Substitution, and Pentavalent Carbon - Pentavalent Carbon? E2, SN1, E1 - Cation Intermediates. Alkenes: Formation, Addition, and Stability - Carbocations and the Mechanism of Electrophilic Addition to Alkenes and Alkynes - Nucleophilic Participation During Electrophilic Addition to Alkenes - Addition to Form Three-Membered Rings: Carbenoids and Epoxidation.

Epoxide Opening, Dipolar Cycloaddition, and Ozonolysis - Metals and Catalysis in Alkene Oxidation, Hydrogenation, Metathesis, and Polymerization - Isoprenoids, Rubber, and Tuning Polymer Properties - Alkynes. Conjugation in Allylic Intermediates and Dienes - Linear and Cyclic Conjugation Theory. 4n+2 Aromaticity - Aromatic Transition States: Cycloaddition and Electrocyclic Reactions - Electronic and Vibrational Spectroscopy - Functional Groups and Fingerprints in IR Spectroscopy. Precession of Magnetic Nuclei - Medical MRI and Chemical NMR - Diamagnetic Anisotropy and Spin-Spin Splitting - Higher-Order Effects, Dynamics, and the NMR Time Scale.

C-13 and 2D NMR. Electrophilic Aromatic Substitution - Aromatic Substitution in Synthesis: Friedel-Crafts and Moses Gomberg - Triphenylmethyl and an Introduction to Carbonyl Chemistry - Mechanism and Equilibrium of Carbonyl Reactions - Imines and Enamines. Oxidation and Reduction - Oxidation States and Mechanisms - Periodate Cleavage, Retrosynthesis, and Green Chemistry - Measuring Bond Energies: Guest Lecture by Prof. G. Barney Ellison - Green Chemistry. Acids and Acid Derivatives - Acids and Acid Derivatives - Acyl Insertions and [gr]α-Reactivity - [gr]α-Reactivity and Condensation Reactions - Proving the Configuration of Glucose and Synthesizing Two Unnatural Products - Review: Synthesis of Cortisone.


Lecture 24: Higher-Order Effects, Dynamics, and the NMR Time Scale

4.1 ( 11 )

Lecture Details

Freshman Organic Chemistry II (CHEM 125B)Because spin-spin splitting depends on electron spin precisely at a nucleus, splitting by a C-13 depends on its orbitals hybridization. "Higher-order effects" that give complex multiplets for nuclei with similar chemical shifts can be understood in terms of the mixing of wave functions of similar energy. Averaging of chemical shifts or spin-spin splitting may be used to measure the rate of rapid changes in molecular structure, such as changes in conformation or hydrogen bonding. Since the spectroscopic time scale depends on frequency differences, averaging is easier in NMR than in IR. A typical problem involves predicting the NMR spectrum of a compound with diastereotopic groups. In proton decoupling radio frequency irradiation of a particular proton can make it cease to split the NMR signals from nearby protons.0000 - Chapter 1. Hybridization and Splitting by C-130939 - Chapter 2. Higher-Order Effects Why Methane Gives a Singlet 1557 - Chapter 3. Averaging and the NMR Time Scale 2504 - Chapter 4. Predicting an NMR Spectrum 4232 - Chapter 5. Electrophile Activation Friedel and CraftsComplete course materials are available at the Open Yale Courses website httpoyc.yale.eduThis course was recorded in Spring 2011.



0 Ratings
comment person image


Excellent course helped me understand topic that i couldn't while attendinfg my college.

comment person image


Great course. Thank you very much.