x
Menu

Freshman Organic Chemistry I

Yale,, Spring 2011 , Prof. Michael McBride

Updated On 02 Feb, 19

Overview

Mechanism: How Energies and Kinetic Order Influence Reaction Rates - Peculiar Rate Laws, Bond Dissociation Energies, and Relative Reactivities - Rate and Selectivity in Radical-Chain Reactions - Electronegativity, Bond Strength, Electrostatics, and Non-Bonded Interactions - Solvation, H-Bonding, and Ionophores - Brnsted Acidity and the Generality of Nucleophilic Substitution - Nucleophilic Substitution Tools - Stereochemistry, Rate Law, Substrate, Nucleophile - Solvent, Leaving Group, Bridgehead Substitution, and Pentavalent Carbon - Pentavalent Carbon? E2, SN1, E1 - Cation Intermediates. Alkenes: Formation, Addition, and Stability - Carbocations and the Mechanism of Electrophilic Addition to Alkenes and Alkynes - Nucleophilic Participation During Electrophilic Addition to Alkenes - Addition to Form Three-Membered Rings: Carbenoids and Epoxidation.

Epoxide Opening, Dipolar Cycloaddition, and Ozonolysis - Metals and Catalysis in Alkene Oxidation, Hydrogenation, Metathesis, and Polymerization - Isoprenoids, Rubber, and Tuning Polymer Properties - Alkynes. Conjugation in Allylic Intermediates and Dienes - Linear and Cyclic Conjugation Theory. 4n+2 Aromaticity - Aromatic Transition States: Cycloaddition and Electrocyclic Reactions - Electronic and Vibrational Spectroscopy - Functional Groups and Fingerprints in IR Spectroscopy. Precession of Magnetic Nuclei - Medical MRI and Chemical NMR - Diamagnetic Anisotropy and Spin-Spin Splitting - Higher-Order Effects, Dynamics, and the NMR Time Scale.

C-13 and 2D NMR. Electrophilic Aromatic Substitution - Aromatic Substitution in Synthesis: Friedel-Crafts and Moses Gomberg - Triphenylmethyl and an Introduction to Carbonyl Chemistry - Mechanism and Equilibrium of Carbonyl Reactions - Imines and Enamines. Oxidation and Reduction - Oxidation States and Mechanisms - Periodate Cleavage, Retrosynthesis, and Green Chemistry - Measuring Bond Energies: Guest Lecture by Prof. G. Barney Ellison - Green Chemistry. Acids and Acid Derivatives - Acids and Acid Derivatives - Acyl Insertions and [gr]α-Reactivity - [gr]α-Reactivity and Condensation Reactions - Proving the Configuration of Glucose and Synthesizing Two Unnatural Products - Review: Synthesis of Cortisone.

Includes

Lecture 29: Imines and Enamines. Oxidation and Reduction

4.1 ( 11 )


Lecture Details

Freshman Organic Chemistry II (CHEM 125B)Imines are pervasive in chemistry and biology, playing key roles both the in artificial Strecker synthesis of amino acids and their biosynthesis by L-glutamate dehydrogenase and by transamination. Imines are also involved in Storks [gr]α-alkylation and acylation of ketones by way of enamine intermediates. Oxidation and reduction in organic chemistry can involve actual electron transfer, when ion-radical intermediates are involved as in the formation of Grignard reagents or in the pinacol reduction. But more often in treating the covalent molecules of organic chemistry atomic oxidation states are used as an artificial bookkeeping device that helps suggest reagent choice for transformations that do not involve literal electron transfer. Oxidation states are assigned by pretending that covalent bonds between different atoms are purely ionic.0000 - Chapter 1. Imines 0716 - Chapter 2. Amino Acid Synthesis 1714 - Chapter 3. Enamine Alkylation and Acylation 2648 - Chapter 4. Oxidation and Reduction as Electron Transfer 3304 - Chapter 5. Oxidation and Reduction as Bookkeeping Atomic Oxidation States Complete course materials are available at the Open Yale Courses website httpoyc.yale.eduThis course was recorded in Spring 2011.

Ratings

0


0 Ratings
55%
30%
10%
3%
2%
Comments
comment person image

Sam

Excellent course helped me understand topic that i couldn't while attendinfg my college.

Reply
comment person image

Dembe

Great course. Thank you very much.

Reply
Send