Freshman Organic Chemistry I

Yale,, Spring 2011 , Prof. Michael McBride

Updated On 02 Feb, 19


Mechanism: How Energies and Kinetic Order Influence Reaction Rates - Peculiar Rate Laws, Bond Dissociation Energies, and Relative Reactivities - Rate and Selectivity in Radical-Chain Reactions - Electronegativity, Bond Strength, Electrostatics, and Non-Bonded Interactions - Solvation, H-Bonding, and Ionophores - Brnsted Acidity and the Generality of Nucleophilic Substitution - Nucleophilic Substitution Tools - Stereochemistry, Rate Law, Substrate, Nucleophile - Solvent, Leaving Group, Bridgehead Substitution, and Pentavalent Carbon - Pentavalent Carbon? E2, SN1, E1 - Cation Intermediates. Alkenes: Formation, Addition, and Stability - Carbocations and the Mechanism of Electrophilic Addition to Alkenes and Alkynes - Nucleophilic Participation During Electrophilic Addition to Alkenes - Addition to Form Three-Membered Rings: Carbenoids and Epoxidation.

Epoxide Opening, Dipolar Cycloaddition, and Ozonolysis - Metals and Catalysis in Alkene Oxidation, Hydrogenation, Metathesis, and Polymerization - Isoprenoids, Rubber, and Tuning Polymer Properties - Alkynes. Conjugation in Allylic Intermediates and Dienes - Linear and Cyclic Conjugation Theory. 4n+2 Aromaticity - Aromatic Transition States: Cycloaddition and Electrocyclic Reactions - Electronic and Vibrational Spectroscopy - Functional Groups and Fingerprints in IR Spectroscopy. Precession of Magnetic Nuclei - Medical MRI and Chemical NMR - Diamagnetic Anisotropy and Spin-Spin Splitting - Higher-Order Effects, Dynamics, and the NMR Time Scale.

C-13 and 2D NMR. Electrophilic Aromatic Substitution - Aromatic Substitution in Synthesis: Friedel-Crafts and Moses Gomberg - Triphenylmethyl and an Introduction to Carbonyl Chemistry - Mechanism and Equilibrium of Carbonyl Reactions - Imines and Enamines. Oxidation and Reduction - Oxidation States and Mechanisms - Periodate Cleavage, Retrosynthesis, and Green Chemistry - Measuring Bond Energies: Guest Lecture by Prof. G. Barney Ellison - Green Chemistry. Acids and Acid Derivatives - Acids and Acid Derivatives - Acyl Insertions and [gr]α-Reactivity - [gr]α-Reactivity and Condensation Reactions - Proving the Configuration of Glucose and Synthesizing Two Unnatural Products - Review: Synthesis of Cortisone.


Lecture 8: Solvent, Leaving Group, Bridgehead Substitution, and Pentavalent Carbon

4.1 ( 11 )

Lecture Details

Freshman Organic Chemistry II (CHEM 125B)The nature of nucleophiles and leaving groups has strong influence on the rate of SN2 reactions. Generally a good nucleophile or strong base is a poor leaving group, but hydrogen-bonding solvents can alter nucleophile reactivity. Although amino and hydroxyl groups are poor leaving groups, they may be converted to groups that leave easily, even from bridgehead positions. Designing the preparation of a sugar analogue containing radioactive fluorine shows how understanding the SN2 mechanism enables PET scanning for medical imaging. Quantum mechanics suggests that the pentavalent carbon species on the SN2 reaction pathway is a transition state, not a stable structure.0000 - Chapter 1. Chapter 1. Nucleophilicity and the Influence of Solvent 0234 - Chapter 2. Leaving Groups & Bridgehead Substitution 1112 - Chapter 3. Making OH a Leaving Group 2748 - Chapter 4. Accelerating SN2 to Support PET Scanning4457 - Chapter 5. Using Theory to Investigate the Possibility of a Pentavalent Carbon Intermediate Complete course materials are available at the Open Yale Courses website httpoyc.yale.eduThis course was recorded in Spring 2011.



0 Ratings
comment person image


Excellent course helped me understand topic that i couldn't while attendinfg my college.

comment person image


Great course. Thank you very much.