Freshman Organic Chemistry I

Yale,, Spring 2011 , Prof. Michael McBride

Updated On 02 Feb, 19


Mechanism: How Energies and Kinetic Order Influence Reaction Rates - Peculiar Rate Laws, Bond Dissociation Energies, and Relative Reactivities - Rate and Selectivity in Radical-Chain Reactions - Electronegativity, Bond Strength, Electrostatics, and Non-Bonded Interactions - Solvation, H-Bonding, and Ionophores - Brnsted Acidity and the Generality of Nucleophilic Substitution - Nucleophilic Substitution Tools - Stereochemistry, Rate Law, Substrate, Nucleophile - Solvent, Leaving Group, Bridgehead Substitution, and Pentavalent Carbon - Pentavalent Carbon? E2, SN1, E1 - Cation Intermediates. Alkenes: Formation, Addition, and Stability - Carbocations and the Mechanism of Electrophilic Addition to Alkenes and Alkynes - Nucleophilic Participation During Electrophilic Addition to Alkenes - Addition to Form Three-Membered Rings: Carbenoids and Epoxidation.

Epoxide Opening, Dipolar Cycloaddition, and Ozonolysis - Metals and Catalysis in Alkene Oxidation, Hydrogenation, Metathesis, and Polymerization - Isoprenoids, Rubber, and Tuning Polymer Properties - Alkynes. Conjugation in Allylic Intermediates and Dienes - Linear and Cyclic Conjugation Theory. 4n+2 Aromaticity - Aromatic Transition States: Cycloaddition and Electrocyclic Reactions - Electronic and Vibrational Spectroscopy - Functional Groups and Fingerprints in IR Spectroscopy. Precession of Magnetic Nuclei - Medical MRI and Chemical NMR - Diamagnetic Anisotropy and Spin-Spin Splitting - Higher-Order Effects, Dynamics, and the NMR Time Scale.

C-13 and 2D NMR. Electrophilic Aromatic Substitution - Aromatic Substitution in Synthesis: Friedel-Crafts and Moses Gomberg - Triphenylmethyl and an Introduction to Carbonyl Chemistry - Mechanism and Equilibrium of Carbonyl Reactions - Imines and Enamines. Oxidation and Reduction - Oxidation States and Mechanisms - Periodate Cleavage, Retrosynthesis, and Green Chemistry - Measuring Bond Energies: Guest Lecture by Prof. G. Barney Ellison - Green Chemistry. Acids and Acid Derivatives - Acids and Acid Derivatives - Acyl Insertions and [gr]α-Reactivity - [gr]α-Reactivity and Condensation Reactions - Proving the Configuration of Glucose and Synthesizing Two Unnatural Products - Review: Synthesis of Cortisone.


Lecture 9: Pentavalent Carbon? E2, SN1, E1

4.1 ( 11 )

Lecture Details

Freshman Organic Chemistry II (CHEM 125B)Preliminary X-ray analysis of molecules that have been designed to favor a carbon with five bonds seemed to suggest the possibility of a pentavalent intermediate in SN2 reactions, but further analysis of these structures showed just the opposite. Boron, however, can be pentavalent in such an environment. E2, SN1 and E1 mechanisms compete with the SN2 reaction. Factors controlling E2 eliminations are illuminated by kinetic isotope effects, stereochemistry, and regiochemistry. The competition between E2 and SN2 mechanisms influence the design of synthetic schemes, including those in which carbon nucleophiles play an important role. SN1 and E1 reactions involve carbocation intermediates and thus the possibility that the carbon skeleton will rearrange.0000 - Chapter 1. Using X-Ray to Investigate the Possibility of a Pentavalent Carbon Intermediate 1441 - Chapter 2. The E2 Reaction and Kinetic Isotope Effects1951 - Chapter 3. Stereochemistry & Regiochemistry of E2 Elimination 3220 - Chapter 4. Strategies for Substitution in Organic Synthesis4139 - Chapter 5. SN1 and E1 Reactions - Kinetic Evidence for SN1 Substitution4509 - Chapter 6. Carbocation Intermediates Competition and RearrangementComplete course materials are available at the Open Yale Courses website httpoyc.yale.eduThis course was recorded in Spring 2011.



2 Ratings
comment person image


Excellent course helped me understand topic that i couldn't while attendinfg my college.

comment person image


Great course. Thank you very much.