Analog IC Design

IIT Madras Course , Prof. Nagendra Krishnapura

285 students enrolled

Overview

Negative feedback systems and stability : Negative feedback amplifier using an integrator, Frequency and time domain behavior, Loop gain and its implications; Negative feedback amplifier realization - Finite DC gain; increasing DC gain; Effect of multiple poles; Negative feedback systems with multiple poles and zeros in the forward path - Stability analysis using Nyquist criterion; Nyquist criterion; Loop gain-Bode plot and time domain interpretation; Significance of 60 degree phase margin.
Opamp at the block level: Frequency compensation : Concept of the opamp for realizing negative feedback circuits; Realizing a multi stage opamp-frequency compensation-miller opamp - Realizing a multi stage opamp- feedforward compensated opamp - Opamp as a general block; unity gain compensation; nonidealities-swing limits, slew rate, off set; dc negative feedback around opamps.

Opamp amplifiers : Amplifiers using Miller compensated opamp; Effect of input capacitance; gain bandwidth product - Transimpedence amplifier; lead-lag compensation; inverting and noninverting amplifiers-CMRR and its importance.
Components available on an IC : IC components and their models.
Single ended opamp design : Realizing a single stage opamp-diff pair; small signal ac analysis; Single stage opamp-mismatch and noise; Single stage opamp-telescopic cascode - Replica biasing a cascode; Single stage opamp-folded cascode; Two stage miller compensated opamp.

Fully differential opamp design : Fully differential opamps; Differential and common mode half circuits; common mode feedback; Fully differential miller compensated opamp-common mode feedback loop and its stability - Fully differential single stage opamp; Fully differential telescopic cascode opamp; Fully differential feedforward compensated opamp.
Phase locked loop : Frequency multiplier-Phase locked loop; Lock range limitations; type ll loop; Jitter & Phase noise; Leesons model of phase noise of VCOs - Continuous time approximation; PLL transfer functions; Reference feedthrough spurs; LC oscillators.

Reference voltage and current generators : Bandgap reference; Bandgap reference; Constant current and constant gm bias generators.
Continuous time filters : Active RC filters using integrators.
Switched capacitor filters : Switched capacitor filters using the bilinear transformation.

Lecture 6:

Up Next
You can skip ad in
SKIP AD >
Advertisement
      • 2x
      • 1.5x
      • 1x
      • 0.5x
      • 0.25x
        EMBED LINK
        COPY
        DIRECT LINK
        PRIVATE CONTENT
        OK
        Enter password to view
        Please enter valid password!
        0:00
        0 (0 Ratings)

        Lecture Details

        Analog IC Design by Dr. Nagendra Krishnapura, Department of Electronics & Communication Engineering, IIT Madras. For more details on NPTEL visit httpnptel.iitm.ac.in

        LECTURES



        Review


        0

        0 Rates
        1
        0%
        0
        2
        0%
        0
        3
        0%
        0
        4
        0%
        0
        5
        0%
        0

        Comments Added Successfully!
        Please Enter Comments
        Please Enter CAPTCHA
        Invalid CAPTCHA
        Please Login and Submit Your Comment