An Introduction to Riemann Surfaces and Algebraic Curves: Complex 1-Tori and Elliptic Curves

IIT Madras Course , Prof. T.E. Venkata Balaji

439 students enrolled

Lecture 13: The Universal covering as a Hausdorff Topological Space

Up Next
You can skip ad in
SKIP AD >
Advertisement
      • 2x
      • 1.5x
      • 1x
      • 0.5x
      • 0.25x
        EMBED LINK
        COPY
        DIRECT LINK
        PRIVATE CONTENT
        OK
        Enter password to view
        Please enter valid password!
        0:00
        0 (0 Ratings)

        Lecture Details

        An Introduction to Riemann Surfaces and Algebraic Curves Complex 1-Tori and Elliptic Curves by Dr. T.E. Venkata Balaji, Department of Mathematics, IIT Madras. For more details on NPTEL visit httpwww.nptel.iitm.ac.insyllabus111106044Goals of Lecture 13 To ask the question as to why the fundamental group of a space occurs as a subgroup of automorphisms of its universal covering To define the universal covering space intuitively as a space of paths To give a natural topology on the space defined above and to show that this topology is HausdorffKeywords for Lecture 13 Path, Fixed-end-point (FEP) homotopy equivalence class, fundamental group, pathwise or arcwise connected, Hausdorff, locally simply connected, universal covering, basic open set, base for a topology, sub-base for a topology

        LECTURES



        Review


        0

        0 Rates
        1
        0%
        0
        2
        0%
        0
        3
        0%
        0
        4
        0%
        0
        5
        0%
        0

        Comments Added Successfully!
        Please Enter Comments
        Please Enter CAPTCHA
        Invalid CAPTCHA
        Please Login and Submit Your Comment

        LECTURES