An Introduction to Riemann Surfaces and Algebraic Curves: Complex 1-Tori and Elliptic Curves

IIT Madras Course , Prof. T.E. Venkata Balaji

332 students enrolled

Lecture 37: The Weight Two Modular Form Vanishes at Infinity I

Up Next
You can skip ad in
SKIP AD >
Advertisement
      • 2x
      • 1.5x
      • 1x
      • 0.5x
      • 0.25x
        EMBED LINK
        COPY
        DIRECT LINK
        PRIVATE CONTENT
        OK
        Enter password to view
        Please enter valid password!
        0:00
        0 (0 Ratings)

        Lecture Details

        An Introduction to Riemann Surfaces and Algebraic Curves Complex 1-Tori and Elliptic Curves by Dr. T.E. Venkata Balaji, Department of Mathematics, IIT Madras. For more details on NPTEL visit httpwww.nptel.iitm.ac.insyllabus111106044Goals In the last few lectures, we constructed an analytic function on the upper half-plane which is a modular form of weight two, i.e., an analytic function that is invariant under the action of the congruence-mod-2 subgroup of the unimodular group. We saw that the effect of a general element of the unimodular group on this weight two modular form can be understood by just computing the effect under each of five unimodular elements representing pre-images of the five non-trivial elements in the quotient by the congruence-mod-2 subgroup. We saw that these computations resulted in five simple and beautiful functional equations satisfied by the weight two modular form. Using these functional equations, we want to find a suitable region in the upper half-plane on which the mapping properties of this weight two modular form may be easily studied. In the previous lecture we saw that the weight two modular form assumes only real values on the imaginary axis, which will turn out to be a boundary for such a region. In this lecture, we show that the weight two modular form vanishes at infinityKeywords Upper half-plane, invariants for complex tori, complex torus associated to a lattice (or) grid in the plane, doubly-periodic meromorphic function (or) elliptic function associated to a lattice, Weierstrass phe-function associated to a lattice, ordinary differential equation satisfied by the Weierstrass phe-function, automorphic function (or) automorphic form, weight two modular function (or) modular form, congruence-mod-2 subgroup of the unimodular group, special linear group, finite group, kernel of a group homomorphism, normal subgroup, zeros of the derivative of the Weierstrass phe-function, singular part of the Laurent expansion, pole of order two, uniform convergence, Weierstrass M-test, removable singularity, entire function, periodic function, period of a function, singly periodic function, Liouvilles theorem

        LECTURES



        Review


        0

        0 Rates
        1
        0%
        0
        2
        0%
        0
        3
        0%
        0
        4
        0%
        0
        5
        0%
        0

        Comments Added Successfully!
        Please Enter Comments
        Please Enter CAPTCHA
        Invalid CAPTCHA
        Please Login and Submit Your Comment

        LECTURES