x
Menu

Natural Language Processing with Deep Learning

Stanford, , Prof. Chris Manning

Updated On 02 Feb, 19

Overview

Natural language processing (NLP) deals with the key artificial intelligence technology of understanding complex human language communication. This lecture series provides a thorough introduction to the cutting-edge research in deep learning applied to NLP, an approach that has recently obtained very high performance across many different NLP tasks including question answering and machine translation.

Includes

Lecture 18: Lecture 17: Issues in NLP and Possible Architectures for NLP

4.1 ( 11 )


Lecture Details

Lecture 17 looks at solving language, efficient tree-recursive models SPINN and SNLI, as well as research highlight "Learning to compose for QA." Also covered are interlude pointer/copying models and sub-word and character-based models.

-------------------------------------------------------------------------------

Natural Language Processing with Deep Learning

Instructors:
- Chris Manning
- Richard Socher

Natural language processing (NLP) deals with the key artificial intelligence technology of understanding complex human language communication. This lecture series provides a thorough introduction to the cutting-edge research in deep learning applied to NLP, an approach that has recently obtained very high performance across many different NLP tasks including question answering and machine translation. It emphasizes how to implement, train, debug, visualize, and design neural network models, covering the main technologies of word vectors, feed-forward models, recurrent neural networks, recursive neural networks, convolutional neural networks, and recent models involving a memory component.

For additional learning opportunities please visit:
http://stanfordonline.stanford.edu/

Ratings

0


0 Ratings
55%
30%
10%
3%
2%
Comments
comment person image

Sam

Excellent course helped me understand topic that i couldn't while attendinfg my college.

Reply
comment person image

Dembe

Great course. Thank you very much.

Reply
Send