x
Menu

Computational Linear Algebra for Coders

Other,, Summer 2017 , Prof. Rachel Thomas

Updated On 02 Feb, 19

Overview

This course is focused on the question: How do we do matrix computations with acceptable speed and acceptable accuracy? The course is taught in Python with Jupyter Notebooks, using libraries such as scikit-learn and numpy for most lessons, as well as numba and pytorch in a few lessons.

Includes

Lecture 7: Computational Linear Algebra 7: Compressed Sensing for CT Scans

4.1 ( 11 )


Lecture Details

Course materials available here: https://github.com/fastai/numerical-linear-algebra
Compressed sensing is critical to allowing CT scans with lower radiation-- the image can be reconstructed with less data. Here we will learn the technique and apply it to CT images.
Numpy Broadcasting
Sparse matrices
CT Scans and Compressed Sensing
L1 and L2 regression
These topics are reviewed in the Lesson 8 Video.

Course overview blog post: http://www.fast.ai/2017/07/17/num-lin-alg/
Taught in the University of San Francisco MS in Analytics (MSAN) graduate program: https://www.usfca.edu/arts-sciences/graduate-programs/analytics
Ask questions about the course on our fast.ai forums: http://forums.fast.ai/c/lin-alg

Ratings

0


0 Ratings
55%
30%
10%
3%
2%
Comments
comment person image

Sam

Excellent course helped me understand topic that i couldn't while attendinfg my college.

Reply
comment person image

Dembe

Great course. Thank you very much.

Reply
Send