x
Menu

Data Science Research Methods: Python Edition

Microsoft, , Prof. Ben Olsen 0.0 ( Reviews) 2395 Students Enrolled

Updated On 02 Feb, 19

Overview

Get hands-on experience with the science and research aspects of data science work, from setting up a proper data study to making valid claims and inferences from data experiments.

Course Description

This course is part of the Microsoft Professional Program Certificate in Data Science and Microsoft Professional Program in Artificial Intelligence.

Data scientists are often trained in the analysis of data. However, the goal of data science is to produce a good understanding of some problem or idea and build useful models on this understanding. Because of the principle of “garbage in, garbage out,” it is vital that a data scientist know how to evaluate the quality of information that comes into a data analysis. This is especially the case when data are collected specifically for some analysis (e.g., a survey).

In this course, you will learn the fundamentals of the research process—from developing a good question to designing good data collection strategies to putting results in context. Although a data scientist may often play a key part in data analysis, the entire research process must work cohesively for valid insights to be gleaned.

Developed as a powerful and flexible language used in everything from Data Science to cutting-edge and scalable Artificial Intelligence solutions, Python has become an essential tool for doing Data Science and Machine Learning. With this edition of Data Science Research Methods, all of the labs are done with Python, while the videos are language-agnostic. If you prefer your Data Science to be done with R, please see Data Science Research Methods: R Edition.

edX offers financial assistance for learners who want to earn Verified Certificates but who may not be able to pay the fee. To apply for financial assistance, enroll in the course, then follow this link to complete an application for assistance.

What you will learn

After completing this course, you will be familiar with the following concepts and techniques:


  • Data analysis and inference

  • Data science research design

  • Experimental data analysis and modeling

Pre-Requesities

To complete this course successfully, you should have:


  • A basic knowledge of math

  • Some programming experience – Python is preferred.

  • A willingness to learn through self-paced study.

Syllabus


  • The Research Process

  • Planning for Analysis

  • Research Claims

  • Measurement

  • Correlational and Experimental Design


Note: This syllabus is preliminary and subject to change.

Ratings

0.0


Ratings
55%
30%
10%
3%
2%
Comments
comment person image

Sam

Sed sollicitudin risus eget nisl accumsan, nec gravida metus fringilla accumsan magna a lorem auctor sagittis.

Reply
comment person image

Dembe

Etiam volutpat, orci quis vulputate sodales, metus diam scelerisque ligula, sit amet conggaugue orci ut leo. Sed mattis suscipit urna sed finibus.

Reply
Send
x