CS231n: Convolutional Neural Networks for Visual Recognition
Stanford, , Prof. Fei-Fei Li
Updated On 02 Feb, 19
Stanford, , Prof. Fei-Fei Li
Updated On 02 Feb, 19
4.1 ( 11 )
In Lecture 13 we move beyond supervised learning, and discuss generative modeling as a form of unsupervised learning. We cover the autoregressive PixelRNN and PixelCNN models, traditional and variational autoencoders (VAEs), and generative adversarial networks (GANs).
Keywords: Generative models, PixelRNN, PixelCNN, autoencoder, variational autoencoder, VAE, generative adversarial network, GAN
Slides: http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture13.pdf
--------------------------------------------------------------------------------------
Convolutional Neural Networks for Visual Recognition
Instructors:
Fei-Fei Li: http://vision.stanford.edu/feifeili/
Justin Johnson: http://cs.stanford.edu/people/jcjohns/
Serena Yeung: http://ai.stanford.edu/~syyeung/
Computer Vision has become ubiquitous in our society, with applications in search, image understanding, apps, mapping, medicine, drones, and self-driving cars. Core to many of these applications are visual recognition tasks such as image classification, localization and detection. Recent developments in neural network (aka “deep learning”) approaches have greatly advanced the performance of these state-of-the-art visual recognition systems. This lecture collection is a deep dive into details of the deep learning architectures with a focus on learning end-to-end models for these tasks, particularly image classification. From this lecture collection, students will learn to implement, train and debug their own neural networks and gain a detailed understanding of cutting-edge research in computer vision.
Website:
http://cs231n.stanford.edu/
For additional learning opportunities please visit:
http://online.stanford.edu/
Sam
Sep 12, 2018
Excellent course helped me understand topic that i couldn't while attendinfg my college.
Dembe
March 29, 2019
Great course. Thank you very much.