x
Menu

Natural Language Processing with Deep Learning

Stanford, , Prof. Chris Manning

Updated On 02 Feb, 19

Overview

Natural language processing (NLP) deals with the key artificial intelligence technology of understanding complex human language communication. This lecture series provides a thorough introduction to the cutting-edge research in deep learning applied to NLP, an approach that has recently obtained very high performance across many different NLP tasks including question answering and machine translation.

Includes

Lecture 3: Lecture 3 | GloVe: Global Vectors for Word Representation

4.1 ( 11 )


Lecture Details

Lecture 3 introduces the GloVe model for training word vectors. Then it extends our discussion of word vectors (interchangeably called word embeddings) by seeing how they can be evaluated intrinsically and extrinsically. As we proceed, we discuss the example of word analogies as an intrinsic evaluation technique and how it can be used to tune word embedding techniques. We then discuss training model weights/parameters and word vectors for extrinsic tasks. Lastly we motivate artificial neural networks as a class of models for natural language processing tasks.

Key phrases: Global Vectors for Word Representation (GloVe). Intrinsic and extrinsic evaluations. Effect of hyperparameters on analogy evaluation tasks. Correlation of human judgment with word vector distances. Dealing with ambiguity in word using contexts. Window classification.

-------------------------------------------------------------------------------

Natural Language Processing with Deep Learning

Instructors:
- Chris Manning
- Richard Socher

Natural language processing (NLP) deals with the key artificial intelligence technology of understanding complex human language communication. This lecture series provides a thorough introduction to the cutting-edge research in deep learning applied to NLP, an approach that has recently obtained very high performance across many different NLP tasks including question answering and machine translation. It emphasizes how to implement, train, debug, visualize, and design neural network models, covering the main technologies of word vectors, feed-forward models, recurrent neural networks, recursive neural networks, convolutional neural networks, and recent models involving a memory component.

For additional learning opportunities please visit:
http://online.stanford.edu/

Ratings

0


0 Ratings
55%
30%
10%
3%
2%
Comments
comment person image

Sam

Excellent course helped me understand topic that i couldn't while attendinfg my college.

Reply
comment person image

Dembe

Great course. Thank you very much.

Reply
Send