An Introduction to Riemann Surfaces and Algebraic Curves: Complex 1-Tori and Elliptic Curves

IIT Madras, , Prof. T.E. Venkata Balaji

Updated On 02 Feb, 19



Lecture 43: A Region in the Upper Half-Plane Meeting Each Unimodular Orbit Exactly Once

4.1 ( 11 )

Lecture Details

An Introduction to Riemann Surfaces and Algebraic Curves Complex 1-Tori and Elliptic Curves by Dr. T.E. Venkata Balaji, Department of Mathematics, IIT Madras. For more details on NPTEL visit httpwww.nptel.iitm.ac.insyllabus111106044Goals of Lecture 41 We prove the fact that a suitable region in the upper half-plane, which was described in the previous lecture and which was shown there to intersect each orbit of the unimodular group, meets each unimodular orbit at precisely one point. All this amounts to showing that the region is indeed a fundamental region for the unimodular group as claimed in the previous lectureKeywords for Lecture 41 Upper half-plane, quotient by the unimodular group, orbits of the unimodular group, representative of an orbit, invariants for complex tori, complex torus associated to a lattice (or) grid in the plane, doubly-periodic meromorphic function (or) elliptic function associated to a lattice, Weierstrass phe-function associated to a lattice, ordinary differential equation satisfied by the Weierstrass phe-function, automorphic function (or) automorphic form, weight two modular function (or) weight two modular form, full modular function (or) full modular form, period two modular form, congruence-mod-2 normal subgroup of the unimodular group, projective special linear group with mod-2 coefficients, finite group, kernel of a group homomorphism, zeros of the derivative of the Weierstrass phe-function, pole of order two (or) double pole with residue zero, universal cover, neighborhood of infinity, lower half-plane, rational function, kernel of a group homomorphism, functional equations satisfied by the weight two modular form, j-invariant of a complex torus (or) j-invariant of an algebraic elliptic curve, Fundamental theorem of Algebra, complex field is algebraically closed, fundamental region for the full modular form, fundamental region for the unimodular group, ramified (or) branched covering, group-invariant holomorphic maps, fundamental region for a group-invariant holomorphic map, fundamental parallelogram associated to a lattice in the plane, fundamental region associated to the quotient map defining a complex torus



0 Ratings
comment person image


Excellent course helped me understand topic that i couldn't while attendinfg my college.

comment person image


Great course. Thank you very much.