Freshman Organic Chemistry I

Yale,, Spring 2011 , Prof. Michael McBride

Updated On 02 Feb, 19


Mechanism: How Energies and Kinetic Order Influence Reaction Rates - Peculiar Rate Laws, Bond Dissociation Energies, and Relative Reactivities - Rate and Selectivity in Radical-Chain Reactions - Electronegativity, Bond Strength, Electrostatics, and Non-Bonded Interactions - Solvation, H-Bonding, and Ionophores - Brnsted Acidity and the Generality of Nucleophilic Substitution - Nucleophilic Substitution Tools - Stereochemistry, Rate Law, Substrate, Nucleophile - Solvent, Leaving Group, Bridgehead Substitution, and Pentavalent Carbon - Pentavalent Carbon? E2, SN1, E1 - Cation Intermediates. Alkenes: Formation, Addition, and Stability - Carbocations and the Mechanism of Electrophilic Addition to Alkenes and Alkynes - Nucleophilic Participation During Electrophilic Addition to Alkenes - Addition to Form Three-Membered Rings: Carbenoids and Epoxidation.

Epoxide Opening, Dipolar Cycloaddition, and Ozonolysis - Metals and Catalysis in Alkene Oxidation, Hydrogenation, Metathesis, and Polymerization - Isoprenoids, Rubber, and Tuning Polymer Properties - Alkynes. Conjugation in Allylic Intermediates and Dienes - Linear and Cyclic Conjugation Theory. 4n+2 Aromaticity - Aromatic Transition States: Cycloaddition and Electrocyclic Reactions - Electronic and Vibrational Spectroscopy - Functional Groups and Fingerprints in IR Spectroscopy. Precession of Magnetic Nuclei - Medical MRI and Chemical NMR - Diamagnetic Anisotropy and Spin-Spin Splitting - Higher-Order Effects, Dynamics, and the NMR Time Scale.

C-13 and 2D NMR. Electrophilic Aromatic Substitution - Aromatic Substitution in Synthesis: Friedel-Crafts and Moses Gomberg - Triphenylmethyl and an Introduction to Carbonyl Chemistry - Mechanism and Equilibrium of Carbonyl Reactions - Imines and Enamines. Oxidation and Reduction - Oxidation States and Mechanisms - Periodate Cleavage, Retrosynthesis, and Green Chemistry - Measuring Bond Energies: Guest Lecture by Prof. G. Barney Ellison - Green Chemistry. Acids and Acid Derivatives - Acids and Acid Derivatives - Acyl Insertions and [gr]α-Reactivity - [gr]α-Reactivity and Condensation Reactions - Proving the Configuration of Glucose and Synthesizing Two Unnatural Products - Review: Synthesis of Cortisone.


Lecture 20: Electronic and Vibrational Spectroscopy

4.1 ( 11 )

Lecture Details

Freshman Organic Chemistry II (CHEM 125B)Time-dependent quantum mechanics shows how mixing orbitals of different energy causes electrons to vibrate. Mixing 1s with 2p causes a vibration that can absorb or generate light, while mixing 1s with 2s causes "breathing" that does not interact with light. Many natural organic chromophores involve mixing an unshared electron pair with a vacant pi orbital, whose conjugation determines color. Infrared spectra reveal atomic vibration frequencies, which are related by Hookes law to bond strengths and "reduced" masses. Infrared spectra are complicated by the coupling of local oscillators of similar frequency to give "normal" modes. Alkane chains possess characteristic stretching and bending modes, with descriptive names, that may, or may not, absorb infrared light.0000 - Chapter 1. Electronic Spectroscopy Atomic Absorption and Time Dependence 1258 - Chapter 2. Organic Chromophores 1938 - Chapter 3. Infrared Spectra, Hookes Law, and Vibrational Frequency 3309 - Chapter 4. Why IR is Complicated Coupled Oscillators and Normal Modes Complete course materials are available at the Open Yale Courses website httpoyc.yale.eduThis course was recorded in Spring 2011.



0 Ratings
comment person image


Excellent course helped me understand topic that i couldn't while attendinfg my college.

comment person image


Great course. Thank you very much.